WEST BENGAL STATE COUNCIL OF TECHNICAL EDUCATION

TEACHING AND EXAMINATION SCHEME FOR DIPLOMA COURSES

COURSE NAME: **DIPLOMA IN ELECTRICAL ENGINEERING (POWER SYSTEM)**

COURSE CODE: EEPS

DURATION OF COURSE : 6 SEMESTERS SEMESTER: **FOURTH SEMESTER**

	SUBJECT	PERIODS					EVALUATION SCHEME					S
Sl. No.	THEORY	L	Т	P	SESSIONAL I		L EXAM	ESE	PRACTICAL (SESSIONAL)		TOTAL	CREDITS
			_		TA	CT	TOTAL		(INT.)	(EXT.)	MARKS	C
1	Transfer System of Electrical Power	3		2	10	20	30	70	25	25	150	4
2	Applied & Digital Electronics	3	0	2	10	20	30	70	25	25	150	4
3	Electrical Machine - II	3	1	3	10	20	30	70	50	50	200	5
4	Power Plant Engineering	4			10	20	30	70			100	4
5	Power Electronics & its Applications	3		2	10	20	30	70	25	25	150	3
6	Computer aided Electrical Drawing			3					25	25	50	2
7	Development of Life Skill-II			2					25	25	50	2
8	Professional Practices - II			2					50		50	1
	TOTAL	16	1	16	<i>50</i>	100	<i>150</i>	<i>350</i>	225	175	900	25
							500)	4	00		

STUDENT CONTACT HOURS PER WEEK: 33 HRS

THEORY AND PRACTICAL PERIODS OF 60 MINUTES EACH

ABBREVIATIONS: L - Lecture, T - Tutorial, P - Practical, TA - Teachers Assessment, CT- Class Test, ESE - End Semester Exam, INT-Internal, EXT-External

TA: Attendance & surprise quizzes = 6 marks. Assignment & group discussion = 4 marks.

Total Marks: 900

Minimum passing marks for sessional is 40%, and for theory subject 40%.

Name of the Course: <i>DIPLOMA IN ELECTRICAL ENGINEERING (POWER SYSTEM)</i> Name of the Subject: <i>Transfer System of Electrical Power</i>								
Subject Code:	Semester: FOURTH							
Duration: one Semester	Maximum Marks: 150							
Teaching Scheme	Examination Scheme							
Theory: 3 Hrs./Week	Mid Semester Exam.: 20 Marks							
Tutorial: nil	Assignment & Quiz: 10 Marks							
Practical: 2 Hrs./Week	End Semester Exam.: 70 Marks							
Credit:4	Practical Exam.: 50 Marks							

Aim:

Sl. No.	
1.	Electrical diploma pass outs should know systems for electrical energy transmission & distribution.
	They also will be able to identify various components & their functions.
2.	They will be able to measure system performance. They will be able to deal with various aspects of transmission and distribution system at different stages including erection and maintenance. Hence he should be well acquainted with the materials required and the methods employed for erection and maintenance.
3.	On completion the study of transmission & distribution, he/she will be able to work as technician/supervisor in power industry, manufacturing industry & public utilities.

Objective:

Sl. No.	
1.	Know various types of transmission & distribution systems.
2.	Identify various components & Know their functions.
3.	Calculate voltage regulation & efficiency of transmission system.
4.	Calculate voltage drop of distribution system.

Pre-Requisite:

,	Sl. No.	
	1.	Basic Electrical Engineering.
[2	2.	Electrical Power Generation

Contents (Theory)

Unit	Name of the Topics:	Hrs./Unit	Marks
Unit: 1	1. Basics Of Transmission.	04	4
	1.1 Layout of a Power System by single line concept.		
	1.2 Concept of Primary & Secondary transmission & Distribution.		
	1.3 Advantages and limitations of using high voltage for power transmission.		
	1.4 Comparison between AC & DC power transmission systems.		
	1.5 Kelvin's laws for the economic choice of conductor size – related problem.		
Unit: 2	2. Transmission Line Components.	12	16
	2.1 Main components of Overhead lines (names & functions only).		
	2.2 Types of conductors-Copper, Aluminum & state their trade names.		
	2.3 Solid, Stranded & bundled conductors.		
	2.4 Types of supports – RCC/PCC poles, steel tower		
	2.5 Comparison between single circuit and double circuit design conception of		
	ground wire.		
	2.7 Line insulators – requirements, types, and field of applications.		
	2.8 Failure of insulators, creepage distance (definition & significance only)		
	2.9 Distribution of potential over a string of three suspension insulators		
	Problems.		
	2.10 Concept of string efficiency, Methods of improving string efficiency		
	Problems.		
	2.11 Corona – corona formation, advantages & disadvantages, factors affecting		
	corona, important terms related to corona.		
	2.12 Calculation of Span length & sag Calculation, effect of wind pressure,		

Contents (Theory)

Unit	Name of the Topics:	Hrs./Unit	Marks
	temperature and ice deposition - Problems.		
	2.13 Stringing chart and its uses.		
	2.14 Spacing of conductors, length of span, Relevant I.E. Rules.		
Unit: 3	3. Transmission Line Parameters	03	3
	3.1 R,L & C of 1-ph & 3-ph transmission line & their effects on line.(No deduction		
	and Problems)		
	3.2 Skin effect, proximity effect & Ferranti effect.		
	3.3 Concept of transposition of conductors & necessity.		
Unit: 4	4. Underground Cables.	04	7
	4.1 Classification of cables and Comparison with overhead lines.		
	4.2 Cable construction.		
	4.3 Description of (i) PVC, (ii) PILC (iii) FRLS (Fire Retardant Low Smoke), (iv)		
	XLPE cables & (v) Gas filled (SF6) cables		
	4.4 Cable Rating and De-rating factor.		
	4.5 Cable laying		
Unit:5	5. Performance of Transmission Line.	09	15
	5.1 Classification of transmission lines.		
	5.2 Losses, Efficiency & Regulation of line.		
	5.3 Performance of single phase short transmission line(Numerical based on it)		
	5.4 Effect of load power factor on performance. Power Factor Improvement Using		
	Static condenser and Synchronous condenser – related problems.		
	5.5 Medium transmission lines-End condenser, Nominal T & Nominal Pi Network		
	with vector diagram no problem.		
Unit:6	6. Extra High Voltage Transmission.	03	5
Cintio	6.1 EHVAC Transmission, Reasons for adoption & limitations.		
	6.2 Regional Grid System (Conception only).		
	6.3 Concept about FACTS and its applications.		
	6.4 HVDC Transmission – Advantages, Limitations.		
	6.5 Discussion on few HVDC system in Indian scenario.		
Unit:7	7. Components Of Distribution System.	08	12
	7.1 Introduction.		
	7.2 Classification of distribution system.		
	7.3 A.C distribution.		
	7.4 Connection schemes of distribution system.		
	7.5 Requirements of Distribution systems.		
	7.6 Design consideration.		
	7.7 A.C. distribution calculations.		
	7.8 Methods of solving A.C1 phase & 3 Ø -phase connection (balanced)		
	distribution system.		
	(Numerical based on 1-ph & 3-ph balanced distribution system)		
Unit:8	8. Substations.	5	8
	8.1 Introduction.		
	8.2 Classification of indoor & outdoor sub-stations.		
	8.3 Advantages & Disadvantages.		
	8.4 Selection & location of site.		
	8.5 Main connection schemes.		
	8.6 Equipments and circuit element of substations – their symbols & function.		
	8.6.1 Bus bar's material, types in detail.		
	8.6.2 Connection diagram and layout of sub-stations with proper notation.		
	TOTAL	48	70

Contents (Practical)

Q1	
S1.	Skills to be developed
No.	
1.	Intellectual Skills:
	1.1 Identification & selection of components.
	1.2 Making proper connections

Contents (Practical)

Con	tents (Fractical)						
Sl.	Skills to be developed						
No.							
2.	Motor Skills:						
	2.1 Ability to measure various parameters.						
	2.2 Ability to follow standard test procedures.						
3.	LIST OF EXPERIMENTS:						
	3.1 To improve P.f. using static condenser.						
	3.2 To study various system faults by D.C. network analyzer.						
	3.3 To study active and reactive power flow through transmission lines.						
	3.4 To study the supply system from 6.6 KV/400V sub-station to a housing complex using slides/model.						
	3.5 To study various types of turbine used in Power station using slides/models.						
	3.6 To study different types of excitation system for alternator using slides/models.						
	3.7 To study different kinds of insulators (Insulators are required to be available in laboratory)						
	3.8 To study PILC, PVC, FRLS and XLPE cables. (Cables are required to be available in laboratory)						
	3.9 To measure Solar Radiation with the help of Pyranometer.						
	3.10 Study of photo voltaic system used in street lighting – PV module, CCU, Battery, CFL.						

Text Books:

Name of Authors	Title of the Book	Name of the Publisher
V. K. Mehta	Principles of power system	S. Chand & Company
SoniGupta-Bhatnagar	A Course in electrical power	Dhanpat Rai
J. B. Gupta	Transmission & distribution of	S.K. Kataria & Sons.
	electrical energy	
Nagsarkar & Sukhija	Power System Analysis	Oxford University Press
Tarlok Singh.	Transmission & Distribution of Power	S.K. Kataria & Sons.

3.11 Study of power generation by wind power – using model / slides.

Reference Books:

Tierer enec 2 const									
Name of Authors	Title of the Book		Name of the Publisher						
A. T. Starr	Generation, Transmission and		Pitman						
	Utilization of Electric Power								
C.L.Wadhwa.	Electrical Power System								
H. Cotton	Electrical Technology								

EXAMINATION SCHEME (THEORITICAL)

		ONE OR TWO SENTENCE ANSWER QUESTIONS					SUBJECTIVE QUESTIONS			
GROUP	UNIT	TO BE SET	TO BE ANSWERE D	MARKS PER QUESTION	TOTAL MARK S	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS	
A	1, 2, 3,4	12	TWENTY	ONE	1 X 20 =	FOUR	FIVE taking at least TWO	TEN	10 X 5 =	
В	5,6,7,8	12	IWENII	ONE	20	FIVE	from each Group	IEN	50	

- 1. Continuous Internal Assessment of 25 marks is to be carried out by the teachers throughout the Fifth Semester. Distribution of marks: Performance of Job -15, Notebook -10.
- 2. External Assessment of 25 marks shall be held at the end of the Fifth Semester on the entire syllabus. One Experiment per student from any one of the above is to be performed. Experiment is to be set by lottery system. Distribution of marks: On spot job -15, Viva-voce -10.

Name of the Course: <i>DIPLOMA IN ELECTRICAL ENGINEERING (POWER SYSTEM)</i> Name of the course: <i>Applied and Digital Electronics</i>				
Course Code: EEPS/S4/ADE Semester: Fourth				
Duration : One Semester Maximum Marks : 150				
Teaching scheme : Examination scheme :				
Theory: 3 Hrs./ Week	Mid Semester Exam: 20 Marks			
Tutorial: Hrs./ Week	Assignment & Quiz: 10 Marks			
Practical: 2 Hrs./ Week	End Semester Exam: 70 Marks			
Credit: 04	Practical: 50 Marks			

Aim:

Sl. No.	
1.	It intends to teach the operating principles and applications of different types of Amplifiers and Oscillators.
2.	The subject also includes the Basic Digital logic circuits and their applications, D/A & A/D converters etc.
3.	Understanding of the subject will provide skill to the students for trouble shooting & testing of some basic
	Amplifier circuits, Oscillator circuits and Digital logic circuits.

Objective

	Sl. No.	Student will be able to:
	1.	Describe the Amplifier circuits and Oscillator circuits.
	2.	Describe the Digital logic circuits, Flip-flop, Counter, Register, D/A & A/D converter.
ſ	3.	Test the Amplifier circuits, Oscillator circuits and Digital logic circuits.

Pre-Requisite:

1.	Knowledge of Basic Electronics.	
2.	Knowledge of Analog & Digital Electronics.	

Contents	(Theory):		
		Hrs./Unit	Marks
Unit: 1	1. Amplifiers:	10	16
	1. Power Amplifiers:		
	1.1.1 Classification of power amplifiers – Class-A, Class-B, Class-AB, Class-C operation,		
	Advantage & disadvantages of these amplifiers.		
	1.1.2 a) Operation of Class-A Push-pull amplifier. b) Operation of Class-B Push-pull		
	amplifier. c) Operation of Class-AB Push-pull amplifier.		
	1.2 FET Amplifier:		
	1.2.1 Biasing methods of FET.		
	1.2.2 Common-Source amplifier - working principle & applications.		
	1.2.3 Introduction to MOSFET – Types of MOSFET, construction, working principle and		
	applications.		
	1.2.4 CMOS – construction and application. frequency.		
	1.3 Operational Amplifier:		
	1.3.1 Basic differential amplifier circuit using BJT.		
	1.3.2 Pin diagram of OPAMP IC741& functions of each pin. Definition of offset voltage,		
	input bias current, input offset current, differential mode gain, CMRR, slew rate		
	1.3.3 OPAMP as Non-inverting and Inverting amplifier.		
	1.3.4 Instrumentation amplifier – Operating principle using OPAMP, Applications.		
Unit: 2	2. Feedback Amplifiers & Oscillators:	08	14
	2.1 Theory of Positive & Negative feedback.		
	2.2 Types of negative feedback amplifiers –shunt-voltage, series-voltage, shunt-current,		
	series-current feedback.		
	2.3 Introduction to oscillator, Block diagram of sine wave oscillator, requirement of		
	oscillation, Barkhausen criterion.		
	2.4 Wien bridge oscillator, Colpitt oscillator – operating principle, frequency of		
II. 4 . 2	oscillation.	00	1.4
Unit: 3	3. Boolean Algebra & Combinational Logic Circuits:	08	14
	3.1 Number Systems – Decimal, Binary, Octal, Hexadecimal, BCD number system & their inter-conversion.		
	3.2 Symbolic representation & Truth tables for logic gates -NOT, OR, AND, NAND, NOR, XNOR, XOR.		
	3.3 Rules & laws of Boolean algebra, Demorgan's Theorems.		
	5.5 Ruics & laws of Doolean argeora, Demorgan's Theorems.		Page

Contents	(Theory);	Hrs./Unit	Marks
	3.4 Max. term & Min. term, Simplification of Boolean expression using Karnaugh map (upto 4 variable).	ms., ome	WILLIAM
	3.5 Realisation of Boolean expression with Logic gates.		
	3.6 Half adder, Full adder, Half subtractor, Full subtractor, Parity Generator and checker,		
	Digital comparator		
	3.7 Code converter, Encoder, Decoder, Multiplexer, Demultiplexer		
Unit: 4	4. Sequential Logic Circuits:	10	14
	4.1 Flip-flops – RS, D, T, JK, JK Master Slave Flip Flops using basic gates, preset		
	and clear signals.		
	4.2 Counters - Asynchronous & Synchronous Counter, Mod-N counter, Up Down		
	Counter, Ring counter,		
	4.3 Registers - Shift register, Serial in Serial out, Serial in Parallel out, Parallel in		
	serial out, Parallel in Parallel out.		
Unit:5	5. Data Converters & Memory Devices:	12	12
	5.1 D/A Converter: Basic concepts, Weighted Resistor D/A converter, R-2R		
	Ladder D/A converter.		
	5.2 A/D Converter: Successive approximation method, Dual slope method.		
	5.3 Concept of - Static Memory & Dynamic Memory, SDRAM, DDR RAM,		
	PROM, EEROM, EPROM.		
	5.4 Comparison of Logic families – DTL,TTL and ECL Gates		
	Total	48	70

Practical:

Skills to be developed:

Intellectual Skills:

- 1. To locate the faults in circuits.
- 2. Interpretation of circuits & corresponding waveforms.

Motor Skills:

- 1. Ability to draw the circuit diagrams.
- 2. Ability to interpret the circuits.

List of Practicals:

List of Practicals:
1. Applied Electronics (Any Three):
1.1 To study RC phase shift oscillator and find out frequency of oscillation.
1.2 To study Colpitt's oscillator and find out frequency of oscillation
1.3 To plot frequency response of FET amplifier.
1.4 To study instrumentation amplifier using OPAMP.
1.5 To construct Adder, Subtractor, Unity gain buffer circuit using OPAMP.
2. Digital Electronics (Any five):
2.1 To realize OR, AND, NOT and XOR gates using Universal gates.
2.2 To realize Half Adder / Full Adder/ Full Subtractor.
2.3 To verify the function of SR, D, JK and T Flip-flops.
2.4 To implement Encoder and Decoder circuit.
2.5 To implement Multiplexer and Demultiplexer circuit.
2.6 To construct binary Asynchronous or Synchronous counter.
2.7 To design controlled shift register & verify SISO, SIPO, PISO, PIPO operation.
2.8 To study D/A converter using trainer kit.
2.9 To study A/D converter using trainer kit.

List of Text Books:

Sl. No.	Name of Author	Title of the Books	Name of Publisher
1.	Albert Malvino & D.J.Bates	Electronic Principles	T.M.Hill
2.	Y.N.Bapat	Electronic Circuits & Systems	T.M.Hill
3.	R.S.Sedha	Applied Electronics	S.Chand & Co.
4.	Allen Mottershed	Electronic Devices & Circuits	P.H.I. Pvt. Ltd.
5.	J.B.Gupta	Electronics Engineering	S.K.Kataria & Sons.
6.	P.John Paul	Electronic Devices & Circuits	New Age International
7.	Chereku & Krishna	Electronic Devices & Circuits	Pearson Education

DIPLOMA IN ELECTRICAL ENGINEERING (POWER SYSTEM)

8.	Malvino & Leach	Digital Principles & Applications	T.M.Hill
9.	Jain	Modern Digital Electronics	T.M.Hill
10.	V.Kumar	Digital Technology	New Age Publisher

EXAMINATION SCHEME (THEORETICAL)

1321111111	EXAMINATION SCHEME (THEORETICAE)								
		ONE OR TWO SENTENCE ANSWER QUESTIONS			SUBJECTIVE QUESTIONS				
GROUP	UNIT	TO BE SET	TO BE ANSWERE D	MARKS PER QUESTION	TOTAL MARK S	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS
A	1, 2,3	12	TWENTY	ONE	1 X 20 =	FIVE	FIVE, TAKING AT LEAST TWO	TEN	10 X 5 =
В	4,5	11	IWENT	ONL	20	FOUR	FROM EACH GROUP	ILN	50

- 1. Continuous Internal Assessment of 25 marks is to be carried out by the teachers throughout the Fourth Semester. Distribution of marks: Performance of Job 15, Notebook (Drawing) 10.
- 2. External Assessment of 25 marks shall be held at the end of the Fourth Semester on the entire syllabus. One Experiment per student from any one of the above is to be performed. Experiment is to be set by lottery system. Distribution of marks: On spot job 15, Viva-voce 10.

Name of the Course: <i>DIPLOMA IN ELECTRIC</i> Name of the Subject: <i>Electrical Machine – II</i>	CAL ENGINEERING (POWER SYSTEM)				
Course Code: EEPS/S4/EM II Semester: Fourth					
Duration : One Semester	Maximum Marks : 200				
Teaching scheme:	Examination scheme:				
Theory: 3 Hrs./ Week	Mid Semester Exam: 20 Marks				
Tutorial: 1 Hrs./ Week	Assignment & Quiz: 10 Marks				
Practical: 3 Hrs./ Week	End Semester Exam: 70 Marks				
	Practical: 100 Marks				
Credit: 5					

Aim:	
Sl. No.	
1.	Students will be able to analyze the performance of 3-phase and single phase A.C motors and 3-phase
	Alternators both qualitatively and quantitatively.
2.	These machines are used widely in various Industries and Power plants. So knowledge gained by the
	students will be helpful in their job in industry and power plants.

Objecti	Objective:				
Sl. No.	Student will be able to:				
1.	Know the constructional details & working principles of A.C motors & generators.				
2.	Test A.C motors & generators.				
3.	Evaluate the performance of A.C machines by conducting different tests.				
4.	Decide the suitability of AC machines for particular purpose.				
5.	Write specifications of A.C motor & generators as required.				
6.	Operate AC motor & generators as per requirement.				

Pre-Re	Pre-Requisite:				
Sl. No.	51. No.				
1.	Three phase & single phase A.C fundamentals, Electromagnetism.				
2.	Basic electronics engineering.				

Contents (Theory)

Unit	Topics	Hrs./Unit	Marks
Unit: 1	1. Three-Phase Induction Motor:	14 +6(T)	24
	1.1 Construction of 3-phase induction motor.		
	1.2 Production of rotating magnetic field.		
	1.3 Working principle of 3-phase induction motor.		
	1.4 Concept of Synchronous Speed & Slip.		
	1.5 Equation of rotor induced emf, current, frequency, reactance & impedance under standstill and running condition. (Numerical)		
	1.6 Vector diagram (at no-load & running condition).		
	1.7 Concept of Equivalent circuit (at no-load, at blocked rotor and at running condition).(No Numerical)		
	1.8 Derivation of Torque equation, Starting torque, Running torque, Maximum torque and condition for maximum torque. (Numerical)		
	1.9 Torque - Slip characteristics, Effect of change in rotor circuit resistance and supply voltage on Torque-Slip characteristics.		
	1.10 Measurement of slip by –		
	a) Tachometer method.		
	b) Comparing rotor & stator frequency.		
	1.11 Power stages in 3-phase induction motor and their relation, Losses,		
	Efficiency. (Numerical)		
	1.12 Starting methods of 3-phase induction motor by— (Numerical)		
	a) Rotor resistance starter.		
	b) Direct -On-Line starter.		
	c) Autotransformer starter.		

Contents (Theory)

Unit	Topics	Hrs./Unit	Marks
	d) Star-Delta starter (Manual & Automatic).		
	1.13 Speed control of 3-phase induction motor by –		
	a) Changing supply frequency.		
	b) Pole changing method.		
	c) Changing Rotor circuit resistance & stator reactance.		
	d) Changing supply voltage.		
	1.14 Braking of 3-phase induction motor by –		
	a) Plugging.		
	b) Rheostatic method.		
	c) Regenerative method.		
	1.15 Cogging & Crawling (simple idea)		
	1.16 Concept of Double cage rotor & Deep-bar rotor.		
	1.17 Motor enclosures and specification as per I.S Code.		
	1.18 Industrial applications of 3-phase induction motor.		
Unit: 2	2. Alternator:	14+2(T)	24
	2.1 Construction of 3-phase alternator, Description of salient & non-salient		
	rotor.		
	2.2 Methods of excitation systems of 3-phase alternator by –		
	a) Static excitation.		
	b) Brushless excitation.		
	c) DC generator.		
	2.3 Advantages of Stationary armature and Rotating field system.		
	2.4 Armature winding – Single layer and multilayer, Concentrated and		
	Distributed (Concept only).		
	2.5 Derivation of E.M.F. equation of 3-phase alternator, Effect of Coil span		
	factor and Distribution factor on emf, Winding factor. (Numerical)		
	2.6 Factors affecting the terminal voltage of alternator –		
	a) Armature resistive drop		
	b) Leakage reactance drop.		
	c) Armature reaction at various p.f, concept of Synchronous reactance.		
	2.7 Phasor diagrams of cylindrical rotor alternator at lagging, leading & unity		
	p.f. loads.		
	2.8 Voltage regulation of 3-phase alternator by – (Numerical)		
	a) Synchronous Impedance Method.		
	b) M.M.F method.		
	2.9 Open circuit characteristics, Short circuit characteristics of alternator and		
	determination of synchronous reactance.		
	2.10 Active & Reactive power equations in terms of load angle at steady state		
	for non-salient pole alternator.		
	2.11 Steady-state characteristics of Alternator –		
	a) Terminal voltage vs. Load current, at different p.f,		
	b) Field current vs. Load current at different p.f,		
	c) Active & Reactive Power vs. load angle (non-salient alternator).		
	2.12 Short circuit ratio (SCR) – concept & significance.		
	2.13 Method of control of Active & Reactive Power of an alternator.		
	2.14 Parallel operation of two alternators – Reasons, & Advantages of Parallel		
	operation.		
	2.15 Synchronization of two or more alternators by -		
	a) Three lamps method.		
	b) Synchroscope.		
	2.16 Parallel operation of (i) an alternator & infinite bus and (ii) Between		
	two alternators & Load sharing between them.(Numerical).		
Unit: 3	3. Synchronous Motor:	08+2(T)	08
		1	
1	3.1 Construction and working principle.		1

Contents (Theory)

Unit	Topics	Hrs./Unit	Marks
	a) An auxiliary motor.		
	b) Damper winding.		
	3.3 Effect of variation of Load – Speed vs. Torque characteristics.		
	3.4 Effect of variation of excitation at infinite bus (over and under excitation) –		
	V curves & inverted V-curves.		
	3.5 Hunting, George's phenomenon.		
	3.6 Applications of synchronous motor, Synchronous condenser.		
Unit: 4	4. Single phase motors:	05+1(T)	08
	4.1 Double-revolving field theory.		
	4.2 Construction, Principle of operation and Applications of different types of		
	single-ph Induction motors –		
	a) Split phase (resistance) type.		
	b) Capacitor start type.		
	c) Capacitor run type.		
	d) Shaded pole motors.		
Unit:5	5. Special Machines:	07+1(T)	06
	5.1 Linear induction motor.		
	5.2 Induction generator.		
	5.3 A.C series motor.		
	5.4 Reluctance Motor.		
	Total	48+16(T)	70

Practical:

Skills to be developed:

Intellectual skills:

- 1. Analytical skills.
- 2. Identification skills.

Motor skills:

- 1. Measurement (of parameters) skills.
- 2. Connection (of machine terminals) skills.

List of Practical:

- **1.** a) To measure the slip of 3-phase induction motor by (i) Stroboscopic method, (ii) Tachometer. b) To reverse the direction of rotation of 3-phase induction motor.
- **2.** To perform No-load test and Blocked-rotor test on 3-phase induction motor & draw the equivalent circuit from the two tests.
- **3.** To perform the load test on 3-phase induction motor and to study the performance characteristics of the motor.
- **4.** To control the speed of 3-phase Induction motor by– (i) Frequency changing method, (ii) Pole-changing method.
- **5.** To determine the effect of the rotor resistance on the torque-speed curves of an induction motor.
- **6.** To observe the effect of excitation and speed on induced e.m.f of a 3-phase alternator and plot the O.C.C. of the alternator
- **7.** To find the percentage regulation of 3-phase alternator by synchronous impedance method at various power factors.
- **8.** To synchronise two 3-phase alternator for parallel operation by a) Three lamp method, b) Synchroscope & to study the sharing of load between the alternators.
- **9.** To list and explain various starting methods of 3-phase synchronous motor and applying any one of them to start the synchronous motor. Plot V-curve & inverted V-curve of the same motor.
- **10.** To study the effect of capacitor on the starting and running condition of a single-phase Induction motor, and to determine the method of reversing the direction of rotation.

Text Books:

1ext b	UUKS.		
Sl. No.	Titles of Book	Name of Author	Name of Publisher
1	Electrical Machines	S.K.Bhattacharya	T.M.H Publishing Co. Ltd.
2	Electrical Technology- Vol-II	B.L.Thereja	S.Chand
3	Electrical Machinery	Dr. S.K.Sen	Khanna Publisher
4	Electrical Machines	J.B.Gupta	S.K.Kataria & Sons.
5	The performance and design of Alternating	M.G.Say	C.B.S Publishers &
	Current machines		Distributors
6	Electrical Machinery	P.S.Bhimbra	Khanna Publisher
7	Electrical Machines	M.N.Bandyopadhyay	P.H.I. Pvt. Ltd.
8	Electrical Machines	Ashfaq Husain	Dhanpat Rai & Co.
9	Principles of Electrical Machines and Power	P.C.Sen	Wiley India
	Electronics		
10	Fundamentals of Electrical Machines	B.R.Gupta & V.Singhal	New Age Publisher
11	Electrical Machines	Nagrath & Kothari	T.M.Hill
12	Electrical Technology	H.Cotton	C.B.S. Publisher New Delhi
13	Electrical Machines	S. Ghosh	Pearson Publisher
14	Electrical Machines	M.V.Deshpande	PHI

EXAMINATION SCHEME (THEORITICAL)

	MUMINITION SCHEME (THEORITICAE)								
		ONE OR TWO SENTENCE ANSWER QUESTIONS			SUBJECTIVE QUESTIONS				
GROUP	UNIT	TO BE SET	TO BE ANSWERE D	MARKS PER QUESTION	TOTAL MARK S	TO BE SET FIVE FOUR	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS
A	1, 4,5	12				FIVE	FIVE, TAKING AT		
В	2,3	11	TWENTY	ONE	1 X 20 = 20	FOUR	LEAST TWO FROM EACH GROUP	TEN	10 X 5 $= 50$

- 1. Continuous Internal Assessment of 50 marks is to be carried out by the teachers throughout the Fourth Semester. Distribution of marks: Performance of Job 30, Notebook (Drawing) 20.
- 2. External Assessment of 50 marks shall be held at the end of the Fourth Semester on the entire syllabus. One Experiment per student from any one of the above is to be performed. Experiment is to be set by lottery system. Distribution of marks: On spot job 35, Viva-voce 15.

Name of the Course: DIPLOMA IN ELECTRICAL ENGINEERING (POWER SYSTEM) Name of the Subject: Power Plant Engineering			
Course Code: EEPS/S4/PPE	Semester: Fourth		
Duration: One Semester	Maximum Marks: 100		
Teaching Scheme	Examination Scheme		
Theory: 4 Hrs/Week	Mid Semester Exam.: 20 Marks		
Tutorial:	Assignment & Quiz: 10 Marks		
Practical:	End Semester Exam.: 70 Marks		
Credit: 04			

Aim

Sl.	
No.	
1.	This is a core technology subject. The knowledge of the principle of generation of electricity, methods of
	generation of electricity & recent trends in generation of electricity is essential for Diploma Engineer.
2.	This subject will provide the basis for further studies in transmission, distribution and power system
	operation. Also the subject will provide the knowledge about the recent trends in non conventional energy
	sources & their working principles.

Objecti	Objective			
Sl. No.	The student will be able to:			
1.	Explain the working of different power plants			
2.	Identify different components of various systems in generating stations			
3.	Select suitable sites for different power stations			
4.	Define the terms used in economics of power generation and explain their relation			
5.	Select alternative energy sources for given conditions			
6.	Explain the working of wind mills and solar systems			
7.	Explain working of domestic & commercial D. G. Set			
8.	Explain working of Gas Turbine			

Pre-Requisite:

Sl. No.	
1.	Energy conversion

Contents

Unit	Topics	Hrs./Unit	Marks
Unit: 1	1.Basics of Power Generation	02	03
	1.1 Importance of electrical power in day today life		
	1.2 Different forms of energy		
	1.3 Comparison of sources of energy		
	1.4 Power crisis in India and Future Trend		
	1.5 Overview of method of electrical power generation		
Unit: 2	2. Thermal Power Stations	08	08
	2.1 List of thermal power stations in the state with their capacities		
	2.2 Selection of site for thermal power stations.		
	2.3 Layout and working of thermal power station with block diagram.		
	2.4 Operation of following components:		
	2.4.1 Boiler		
	2.4.2 Economizer.		
	2.4.3 Air pre heater		
	2.4.4 Super-heaters & re-heaters.		
	2.4.5 Steam prime movers.		
	2.4.6 Condensers.		
	2.4.7 Spray ponds & cooling towers.		
	2.5 Quality of fuel and its effect on quality of power generation.		
	2.6 Merits and demerits of Thermal Power Plants.		
	2.7 Simple Problems.		

Contents

Unit	Topics	Hrs./Unit	Marks
Unit: 3	3. Nuclear Power Stations	06	07
	3.1 Selection of site for Nuclear Power plants.		
	3.2 Nuclear fission process		
	3.3 Block diagram and working of Nuclear Power station.		
	3.4 Construction and working of nuclear reactor.		
	3. 5 Fuels used in Nuclear Power Station		
	3. 6 Merits and demerits of Nuclear Power Plants		
	3. 7 List of Nuclear power stations in state & county with their capacities.		
Unit: 4	4. Hydro Power Stations	06	07
	4.1 Selection of site and classification of Hydroelectric Power Plants		
	4.2 Layout and working of Hydro Power Station.		
	4.3 Types of Turbines & generators used		
	4.4 Pumped storage Power Plant		
	4.5 Merits and demerits of Hydro Power Station		
	4.6 List of Hydro Power stations with their capacities & number of units in the		
	state.		
	4.7 Simple Problem.		
Unit: 5	5. Diesel Electric Power Stations	06	05
	5.1 Selection of site for Diesel Electric Power Station.		0.0
	5.2 Elements of diesel Electric power plants and their working.		
	5.3 Operation, maintenance & trouble shooting chart of diesel Electric plant.		
	5.4 Merits, demerits and applications of diesel electric power stations		
	5.5 Performance and thermal efficiency of Diesel Electric Power Plant.		
Unit:6	6. Gas Turbine Power Plants	03	05
0111110	6.1 Selection of site for Gas Turbine Power Station.		00
	6.2 Fuels for gas turbine		
	6.3 Elements of simple gas turbine power plants		
	6.4 Merits, demerits and application Gas turbine power plants.		
UNIT:7	7. Non-Conventional Energy Sources	20	20
	7.1 Types of non-conventional energy sources.		
	7.2 Solar Energy		
	7.2.1 Potential of solar energy.		
	7.2.2 Solar collector (Flat Plate Collector & Concentrating Collector)		
	7.2.3 Comparison of performances of different collectors.		
	7.2.4 Solar water heater.		
	7.2.5 Solar Thermal Power Plant - System block diagram with description		
	& efficiency.		
	7.2.6 Thermal Storage system (Thermocline storage system, Hot cold		
	system)		
	7.2.7 Photovoltaic cell: Principle of operation, Types, conversion		
	efficiency, V-I characteristics.		
	7.2.8 Solar Cell Materials.		
	7.2.9 Methods of increasing Cell Efficiency.		
	7.2.10 Photovoltaic system of power generation – Solar PV arrays, solar		
	cell connecting arrangements, storage batteries, inverters, advantages		
	& disadvantages.		
	7.2.11 Limitation of using solar energy systems.		
	7.3 Wind Energy.		
	7.3.1 Selection of site for wind mills		
	7.3.2 Principle of electricity generation with the help of wind energy		
	7.3.3 Block diagram and working of Wind energy plant and its		
	applications		
	7.3.4 List of major wind farms in the state with their approximate		
	capacities		
	7.4 Bio-mass & Bio-gas energy.		
	7.4.1 Composition of Bio-gas & its calorific value.		
	7.4.2 Traditional; non-traditional Biogas plants		

Contents

Unit	Topics	Hrs./Unit	Marks
	7.4.3 Bio-mass based power generation plants & their capacities.		
	7.5 Geothermal Energy		
	7.5.1 Introduction		
	7.5.2 Classification – Vapour dominated & Liquid Dominated (schematic		
	diagram with description of parts)		
	7.5.3 Operational & environmental problem		
Unit: 8	8. Economics Of Power Generation	08	08
	8.1 Terms commonly used in system operation: connected load, firm power,		
	cold reserve, hot reserve, spinning reserve.		
	8.2 Terms used in system operation such as Load-curve, load duration curve,		
	integrated duration curve. (Simple numerical based on plotting above		
	curves.)		
	8.3 Factors affecting the cost of Generation: Average demand, Maximum		
	demand, plant capacity factor & plant use factor, Diversity factor& load		
	factor.		
	(Simple numerical based on above)		
Unit:9	9. Interconnected Power Systems	05	07
	9.1 Advantages of Interconnection.		
	9.2 Base load & peak loads, load allocation among various types of power		
	stations		
	9.3 Load sharing and transfer of load between power stations.		
	9.4 Inter connection of power stations at state and national level		
	TOTAL	64	70

Text Books:		
Name of Authors	Title of the Book	Name of the Publisher
J.B.Gupta	A course in Power System	S.K.Kataria & Sons
Umesh Rathore	Energy Management	S.K.Katharia & Sons
Dr. R.KSingal	Non-conventional Energy Resources	S.K.Katharia & Sons
Dr. S. L. Uppal	Electrical Power	Khanna Publishers.
Soni-Gupta-Bhatnagar	A course in Electrical Power	Dhanpatrai & Sons
Prof. G. D. Rai	Non conventional Energy sources	Khanna, New Delhi
Prof. Arrora and Dr. V.	A course in Power Plant Engineering	Dhanpatrai & Sons
M. Domkundwar		_

EXAMINATION SCHEME (THEORITICAL)

12.	VHIATIL	ATION		IE (THEON	HIICAL)					
			ONE OR TWO SENTENCE ANSWER QUESTIONS				SUBJECTIVE QUESTIONS			S
(GROUP	UNIT	TO BE SET	TO BE ANSWERE D	MARKS PER QUESTION	TOTAL MARK S	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS
	A	1, 2, 3,4,5,6	12	TWENTY	ONE	1 X 20 =	FIVE	FIVE, TAKING AT LEAST TWO	TEN	10 X 5 =
	В	7,8,9	11	1 WENT 1	ONE	20	FOUR	FROM EACH GROUP	ILN	50

Name of the Course: <i>DIPLOMA IN ELECTRICAL ENGINEERING (POWER SYSTEM)</i>			
Name of the Subject: Power Electronics & its Applications			
Subject Code: EEPS/S4/PEA	Semester: FOURTH		
Duration: one Semester	Maximum Marks: 150		
Teaching Scheme	Examination Scheme		
Theory: 3 Hrs./Week	Mid Semester Exam.: 20 Marks		
Tutorial: nil	Assignment & Quiz: 10 Marks		
Practical: 2 Hrs./Week	End Semester Exam.: 70 Marks		
Credit: 03	Practical Exam.: 50 Marks		

Aim:	
Sl. No.	
1.	The field of Electrical Engineering is generally segmented into three major areas - Electronics, Power & Control.
2.	This subject is the combination of these three areas. Nowadays all the industrial drives to run a machine and to control it as per requirement are based on Power Electronics.
3.	Understanding of the subject will provide skill to the students for trouble shooting & testing of Power semiconductor devices, Solid state DC & AC motor drives.

Objective:

O DJCCCI I	
SI. No.	Student will be able to:
1.	Describe the Power semiconductor devices & draw their characteristics.
2.	Describe the Inverter, Converter & Chopper circuits.
3.	Explain the operation of the DC motor & AC motor drives

Pre-Requisite:

1.	Knowledge of Applied Electronics.
2.	Knowledge of DC & AC Motor operation to run their drives.

UNIT	CONTENTS	HOURS	Marks
1	Introduction to Power Electronics	8	12
	 Necessity of Power generation. conversion 		
	❖ Applications of Power Electronics		
	 Thyristor family 		
	Characteristics and symbolic representation, and list of applications of SCR, DIAC, TRIAC, GTO, SUS, LASCR, IGBT.		
	 ❖ SCR: Construction, operation, Two transistor analogy ✓ Triggering methods of SCR • Voltage triggering. • dv/dt triggering. • Light triggering. • Gate triggering 		
	 ■ DC gate triggering ■ AC gate triggering. ■ Pulse gate triggering. ✓ SCR Turn-off process ✓ SCR Specifications ratings Voltage rating, current rating, Power rating, Temperature rating ✓ SCR selection factors ✓ SCR testing 		
2	Converters	8	12
	 Necessity of Convertors 		
	 Concept of firing angle and conduction angle 		
	 ❖ Single phase fully controlled half wave converter ✓ With resistive load ✓ RL load without freewheeling diode. ✓ RL load with freewheeling diode. ❖ Single phase full wave controlled converter ✓ With resistive load 		

UNIT	CONTENTS	HOURS	Marks
	 ✓ With RL load ❖ Single phase fully controlled bridge converter ✓ With resistive load ✓ With RL load ❖ With RL load ❖ Comparison of 3Ø and 1Ø converters on the basis of efficiency, ripple factor, RMS Values and average values ❖ Effect of source impedance on converter operation. ❖ Cycloconverters and cycloinverters: 1Ø and 3Ø- Principle of operation, input and output waveforms. 		
3	Need of Inverter Need of Inverter Liang (Natural) commutated Inverters Line (Natural) commutated Inverters: Forced commutated inverters: Series, parallel and bridge inverters. (circuit, description and waveforms) Series inverters: Operation of basic series inverter , Modified series inverter, Three phase series inverter. Parallel inverters: Operation of basic parallel inverter circuit. Single Phase Bridge Inverter Half bridge inverter Half bridge inverter Mc Murry Full Bridge Inverter Mc Murry Bedford Inverter Mc Murry Bedford Inverter Necessity of control of output voltage. Methods for output voltage control: External control of DC voltage, External control of AC voltage and internal control. Pulse width modulation (PWM) method: Single pulse width modulation, multiple pulse width modulation, Sinusoidal pulse width modulation, transformer connections, using filter (LC, Resonant and OTT filter) Concept of MOSFET Inverter and comparison with thyristor based inverter Inverter selection factors	10	14
4	Choppers	8	12
5	Applications of Power Electronics DC Drives ✓ Speed control of DC series motor with 1Ø and 3Ø half and full control converter, step up and step down chopper ✓ DC servo motor(working and Construction): speed control of DC servo motor ✓ AC servo motor(working and Construction): speed control of AC servo motor ✓ AC servo motor AC Drives ✓ Speed control of 3Ø induction motor	14	20

UNIT	CONTENTS	HOURS	Marks
	 ■ Variable frequency control: Voltage source inverter, current source inverter, cycloconverter ✓ Stepper motor: Variable reluctance, Permanent magnet-step control Open loop control system for stepper motor, stepper motor specifications ✓ Other applications: Circuit diagram, operation ■ Static circuit breaker(DC and AC) ■ Induction heating control ■ Dielectric heating control ■ Electric welding control ■ Battery charger control ■ Automatic street lighting circuit using SCR ■ Static VAR compensation system 		
	TOTAL	48	70

Practical:
Skills to be developed:
Intellectual Skills:
1. Ability to select appropriate devices & instruments.
2. Ability to test & troubleshoot.
Motor Skills:
1. Ability to draw the circuit diagrams.
2. Ability to interpret the circuits and waveforms.

List of Practical (At least Eight Experiments are to be performed):

- 1. To understand the V-I characteristics of SCR and to determine the latching current, holding current and the forward break over voltage
- 2. To understand 1-phase full wave controlled rectifier using SCR and plot input and output waveforms for R and RL load with and without freewheel diode. To learn effect of variation in firing angle .
- 3. To study 3-phase full wave controlled rectifier with R and R-L load and plot input and output waveforms for R and RL load with and without freewheel diode .
- 4. To study 1-phase series inverter and to measure the output signal resonance frequency and voltage
- 5. To study current commutated step down chopper and to observe the change in output voltage.
- 6. To understand operation of SCR based DC static circuit breaker using SCR.
- 7. To understand operation of battery charger using SCR and observe change in charging voltage and current
- 8. To understand the speed control of DC shunt series motor using SCR phase control and plot speed armature voltage characteristics (as D C series motor is not safe under no load condition . It may cause accident)
- 9. To understand the speed control of 3-phase induction motor using PWM inveter inverter and plot its speed –torque characteristics
- 10. To understand operation of stepper motor and verify stepping sequence by measuring step angle.
- 11. To understand the operation of D C servomotor and plot variation in speed with change in reference voltage

List of Text Books:

SI. No.	Name of Author	Title of the Books	Name of Publisher
1.	M.D.Singh, K.B.Kanchandani	Power Electronics	T.M.Hill.
2.	Mohan, Undeland, Robbins	Power Electronics	Wiley India
3.	S.N. Singh	Power Electronics	Dhanpat Rai & Co.
4.	V. Subrahmanyam	Electric Drives - concepts & applications	T.M.Hill
5.	Albert Malvino & D.J.Bates	Electronic Principles	T.M.Hill
6.	V.R.Moorthi	Power Electronics	Oxford
7.	G.K.Dubey	Fundamentals of Electric drives	Narosa Publishing House

List of Text Books:

SI. No.	Name of Author	Title of the Books	Name of Publisher	
8.	M.H.Rashid	Power Electronics	P.H.I. Ltd	
9.	K.Haribabu	Power Electronics	Scitech Publisher	

EXAMINATION SCHEME (THEORITICAL)

	ONE OR TWO SENTENCE ANSWER QUESTIONS			SUBJECTIVE QUESTIONS							
GROUP	UNIT	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARK S	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS		
A	1,2,3	12				23.77	1X20	FIVE	FIVE, TAKING AT LEAST TWO		10X5
В	4,5	11	TWENTY	ONE	= 20	FOUR	FROM EACH GROUP	TEN	= 50		

- 1. Continuous Internal Assessment of 25 marks is to be carried out by the teachers throughout the Fifth Semester. Distribution of marks: Performance of Job 15, Notebook 10.
- 2. External Assessment of 25 marks shall be held at the end of the Fifth Semester on the entire syllabus. One Experiment per student from any one of the above is to be performed. Experiment is to be set by lottery system. Distribution of marks: On spot job 15, Viva-voce 10.

Name of the Course: <i>DIPLOMA IN ELECTRICAL ENGINEERING (POWER SYSTEM)</i> Name of the Subject : <i>Computer aided Electrical Drawing</i>				
Course Code: EEPS/S4/ED	Semester: Fourth			
Duration: One Semester	Maximum Marks: 50			
Teaching Scheme	Examination Scheme			
Theory:	Practical: 50 Marks			
Tutorial:				
Practical: 03 hrs/week				
Credit: 02				

Aim:

Sl. No.

1.	Students will be able to be able to know various commands of AutoCAD.
2.	Electrical Drawing indicates the symbolic representation and position of components. It also shows the
	power flow through them for a given systems. Ability to draw, read and understand the drawing will
	facilitate the visualization of the complete installation which makes it easy to troubleshooting,
	maintenance of the system.

Objective

Sl. No.	The students will be able to,		
1.	Read electrical drawing for any system to understand the working of the system and its components.		
2.	Find the important points in the circuit diagrams or layout for troubleshooting and maintenance.		
3.	Use graphic software to draw the circuit for various types of electrical systems.		
Skills to	Skills to be developed		
1.	Intellectual Skills: i) Analytical Skill; ii) Identification skill		
2.	Motor Skills: i) Operate various parts of computer properly. ii) Problem solving skill.		

Pre-Req	uisite:
Sl. No.	
1.	Basic Electrical Engineering

Contents

Sl. No.	
1.	CAD: Necessity and its application in Engineering Field
2.	Awareness of commands: Limit, zoom, pan, line, circle, polyline, multiline, arc, text, dimension,
	hatch, layer, offset, trim, extend, erase, scale, dist, area, fillet, chamfer, array, block, attribute etc.
3.	Draw a sheet of a sample figure (to be provided by the subject teacher) using different
	edit/modify option of CAD
4.	Draw a sheet of electrical symbols for representation of Electrical machines, Equipments, accessories,
	switching and protection equipment as per IS 2032 using CAD.
5.	Draw electrical wiring with accessories on a single storied building (3 BHK) plan, showing Energy
	meter, Main switch, Distribution Board, Light points, Socket outlets using CAD.
6.	A three phase induction motor is to be started and stopped direct on line with the help of two push
	button.
	Draw i) Schematic diagram for the control circuit, ii) power circuit, iii) Complete wiring diagram
	(showing overload and short circuit protection) using CAD.
7.	A three phase induction motor is to be started and stopped direct on line (D.O.L.) from different
	locations through push buttons such that the motor can be started from one location and stopped from
	other location or vice versa.
	Draw i) Schematic diagram for the control circuit, ii) Complete wiring diagram (showing overload and
	short circuit protection) using CAD.

Text Books:

Name of Authors	Title of the Book	Name of the Publisher
Sham Tickoo & Shafali Pandita	AutoCAD Electrical 2010 for Engineers	Pearson

Text Books:

Name of Authors	Title of the Book	Name of the Publisher	
Goutam Pohit & Goutam Ghosh	Machine Drawing with Auto CAD	Pearson	
Surjit Singh	Electrical Engineering Drawing (Part I & Part II)	S.K.Kataria & Sons	

- 1. Continuous Internal Assessment of 25 marks is to be carried out by the teachers throughout the Fourth Semester. Distribution of marks: Performance of Job -15, Notebook (Drawing) -10.
- 2. External Assessment of 25 marks shall be held at the end of the Fourth Semester on the entire syllabus. One Sheet per student from any one of the above is to be drawn. Sheet is to be set by lottery system. Distribution of marks: On spot job -15, Viva-voce -10.

Name of the Course: DIPLOMA IN ELECTRICAL ENGINEE Name of the Subject: Development of Life Skill - I	
Course code : EEPS/S4/DLS-II	Semester: FOURTH
Duration: One Semester (16 hours)	Maximum Marks: 50
Teaching Scheme	Examination Scheme:
Theory: hrs/week	Internal Sessional: 25
Tutorial: hrs/week	External Sessional: 25
Practical: 02 hrs/week	
Credit: 2	

UNITS	CONTENTS	Hours
Unit -1	Interpersonal Relation	4
	Importance, Interpersonal conflicts. Resolution of conflicts. Developing	
	effective interpersonal skills - communication and conversational skills.	
**	Human Relation Skills (People Skills)	
Unit - 2	Problem Solving	5
	I) Steps in Problem Solving (Who? What? Where? When? Why? How? How	
	much?) 1. Identify, understand and clarify the problem	
	2. Information gathering related to problem	
	3. Evaluate the evidence	
	4. Consider feasible options and their implications	
	5. Choose and implement the best alternative	
	6. Review	
	II) Problem Solving Technique	
	1. Trial and Error, 2. BrainStorming 3. Thinking outside the Box	
Unit - 3	Presentation Skills	5
	Concept, Purpose of effective presentations.	
	Components of Effective Presentations:	
	understanding the topic,	
	selecting the right information,	
	organising the process interestingly.	
	Good attractive beginning.	
	Summarising and concluding,	
	adding impact to the ending.	
	Use of audio-visual aids - OHP, LCD projector. White board.	
	Non-verbal communication:	
	Posture, Gestures, Eye-contact and facial expression.	
	Voice and Language - Volume, pitch. Inflection, Speed, Pause, Pronunciation,	
	Articulation, Language	
	Handling questions - Respond, Answer, Check, Encourage, Return to	
	presentation	
	Evaluating the presentation - Before the presentation, During the	
	presentation.	
**	After the presentation	
Unit - 4	Looking for a Job	4
	Identifying different sources announcing Job vacancies.	
	Skim, scan and read advertisements in detail,	
	write efficacious CVs,	

UNITS	CONTENTS	Hours
	write covering letters to accompany CVs,	
	write Job Application Letters - in response to advertisements and self-	
	applications	
Unit - 5	Job Interviews	6
	Prepare for Interviews:	
	Intelligently anticipating possible questions and framing appropriate	
	answers,	
	Do's and don'ts of an interview (both verbal and non-verbal).	
	Group Discussion:	
	Use of Non-verbal behavior in Group Discussion,	
	Appropriate use of language in group interaction,	
	Do's and don'ts for a successful Group Discussion	
Unit - 6	Non-verbal - graphic communication	4
	Non - verbal codes: A - Kinesics, B - Proxemics, C- Haptics, D - Vocalics, E-	
	Physical appearance, F- Chronemics, G - Artifacts	
	Aspects of Body Language	
Unit - 7	Formal Written Skills:	4
	Memos, E-mails, Netiquettes,	
	Business correspondence - Letter of enquiry. Letter of Placing Orders, Letter	
	of Complaint	
	Total	32

Sessional Activities		
Unit-1	Case Studies:	
Interpersonal	1.from books	
Relation	2.from real life situations	
	3.from students' experiences	
	Group discussions on the above and step by step write of any one or more of these in the	
	sessional copies	
Unit-II	Case Studies:	
Problem	1.from books	
Solving	2.from real life situations	
	3.from students' experiences	
	Group discussions on the above and step by step write of any one or more of these in the	
	sessional copies	
	Prepare a Presentation (with the help of a Powerpoint) on a Particular topic. The students	
Presentation	may refer to the Sessional activity (si. No. 8) of the Computer Fundamental syllabus of	
Skills	Semester 1. For engineering subject-oriented technical topics the co-operation of a subject	
	teacher may be sought. Attach handout of PPT in the sessional copy	
Unit-IV	Write an effective CV and covering letter for it.	
Looking for a	Write a Job Application letter in reponse to an advertisement and a Self Application Letter for	
job	a job.	
Unit-V	Write down the anticipated possible questions for personal interview (HR) along with their	
Job	appropriate responses	
Interviews	Face mock interviews. The co-operation of HR personnels of industries may be sought if	
& Group	possible.	
Discussions	Videos of Mock Group Discussions and Interviews may be shown	

Sessional Activities		
Unit-7	Write a memo,	
Formal	Write an effective official e-mail,	
Written	Write a letter of enquiry, letter of placing orders, letter of complaint	
Skills		

- 1. Continuous Internal Assessment of 25 marks is to be carried out by the teachers throughout the Fourth Semester. Distribution of marks: Performance of Job -15, Notebook -10.
- 2. External Assessment of 25 marks shall be held at the end of the Fourth Semester on the entire syllabus. Distribution of marks: On spot job -15, Viva-voce -10.

Name of the Course: <i>DIPLOMA IN ELECTRICAL ENGINEERING (POWER SYSTEM)</i> Name of the Subject: <i>Professional Practices II</i>		
Course Code: EEPS/S4/PF II	Semester: Fourth	
Duration: One Semester	Maximum Marks: 50	
Teaching Scheme	Examination Scheme	
Theory:	Practical: 50 Marks	
Tutorial:		
Practical: 02 hrs/week		
Credit: 01		

Aim:

Sl. No.		
1.	Most of the diploma holders join industries. Due to globalization and competition in the industrial and	
	service sectors the selection for the job is based on campus interviews or competitive tests.	
2.	While selecting candidates a normal practice adopted is to see general confidence, ability to communicate	
	and attitude, in addition to basic technological concepts.	
3	The purpose of introducing professional practices is to provide opportunity to students to undergo	
	activities which will enable them to develop confidence. Industrial visits, expert 1 ectures, seminars on	
	technical topics and group discussion are planned in a semester so that there will be increased participation	
	of students in learning process.	

Objective:

· ·	
Sl. No.	The student will be able to
1.	Acquire information from different sources
2.	Prepare notes for given topic
3.	Present given topic in a seminar
4	Interact with peers to share thoughts
5	Prepare a report on industrial visit, expert lecture

Pre-Requisite:

Sl. No.	
1.	Desire to gain comparable knowledge and skills of various activities in various areas of importance.
2.	Eagerness to cohesively participate in group work and to share thoughts with group members.
3.	Knowledge of electrical engineering upto 4th semester.

Activities

Sr . No.	Activities	Hours
1.	Industrial / Field Visit :	06
	Structured Field visits be arranged and report of the same should be	
	submitted by the individual student, to form part of the term work.	
	Visits to <u>any ONE</u> (not already visited in 3rd semester) from the list below:	
	i) Electrical machine manufacturing industry ii) Multistoried building for power Distribution iii)	
	Load dispatch center iv) Transformer repair workshop.	
	v) Foundry (to see furnaces and oven)	
	vi) Food Processing industry (overall technical and other activities)	
	vii) An industry automation in manufacturing	
	viii) District Industries Centre (to know administrative set up, activities, various schemes etc)	
	ix) Any loco shed	
	x)Signaling system of a railway station	
	xi) Any captive power plant.	
	xii) Motor rewinding in a motor rewinding shop	
	Guest Lecture by professional / industrial expert: Lectures by Professional / Industrial Expert to	4
2	be organized from any TWO of the following areas:	
2.	i) Modern concept of lighting / illumination	
	ii) Viability of electric traction in 21st Century	
	iii) Modern techniques in Power Generation	

Activities

Activities Sr . No.	Activities	Hours
51 . 140.		110015
	iv) Role of power factor improvement as a tool in reducing cost of generation v) Digital metering	
	vi) Hydro power generation	
	vii) Functioning of Electricity regulatory Commission.	
	viii)Introduction and application areas for MEMS (Micro Electromechanical System)	
	ix) Interview techniques	
	x)Free and open source software	
	xi) Cyber crime & Cyber laws	
	xii)Social networking – effects & utilities	
	xiii) Ethical Hacking.	
	xiv) Role of micro, small and mediun enterprise. In Indian economy.	
	Individual report of the above lecture should be submitted by the students.	
	Seminar:	12
	Any one seminar on the topics suggested below:	
	Students (Group of 4 to 5 students) have to search / collect informati on about the topic through	
	literature survey/ internet search / visit a nd discussion with expert or concerned persons	
	1. Water Supply scheme / Problems of drinking water in rural area	
	2. Schemes of power generation in coming five years	
3.	3. Impact of load shedding on rural population	
	4. Parallel computing	
	5. Distributed processing	
	6. Embedded system	
	7. Computer security	
	8. Bio – technology	
	9. Multimedia techniques.	
	10. Magnetic levitation system	
4.	Students' Activities / mini project:(any one)	10
	i) Prepare a report in open software Latex. Report should include text, table, figure, mathematical	10
	expression, heading etc. all features of a report.	
	ii) Collect information from market regarding technical specification, identification no, their	
	meaning, manufacturers' names and co st of electronic devices like diode, zener diode, transistors,	
	JFET, MOSFET, ic 555, ic 741, digital ics (All items studied upto 4th semester). Submit the report	
	along with power point presentation. Stu dents are encouraged to use open software	
	iii) Make a list of all items required to assemble an updated version of personal computer. Write	
	technical specification, manufacturer s' names, cost of all the parts and prepare a comparative	
	analysis to arrive at a decision for final combination of items. Also make such list for required	
	external hardware/devices. Prepare a powerpoint presentation alongwith the report. Students are	
	encouraged to u se open softwares for such purpose.	
	iv) Develop a website for your institute.	
	v) Animation project using c, c++, VB	
	vi) make a market survey of all transducers available (studied in fourth semester) their	
	specifications, manufacturers' names, cost e tc. Prepare a power point presentation. Students are	
	encouraged to use open software for such purpose.	
	TOTAL	32

EXAMINATION SCHEME (SESSIONAL)

1. Continuous internal assessment of 50 marks is to be carried out by the teachers throughout the fourth semester. Distribution of marks: Project =20, seminar = 10, field visit = 10, guest lecture attendance and report = 10